翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

algebraic function : ウィキペディア英語版
algebraic function

In mathematics, an algebraic function is a function that can be defined
as the root of a polynomial equation. Quite often algebraic functions can be expressed using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power:
:f(x)=1/x, f(x)=\sqrt, f(x)=\frac-\sqrt x^}
are typical examples.
However, some algebraic functions cannot be expressed by such finite expressions (as proven by Galois and Niels Abel), as it is for example the case of the function defined by
: f(x)^5+f(x)^4+x=0.
In more precise terms, an algebraic function of degree ''n'' in one variable ''x'' is a function y = f(x) that satisfies a polynomial equation
: a_n(x)y^n+a_(x)y^+\cdots+a_0(x)=0
where the coefficients ''a''''i''(''x'') are polynomial functions of ''x'', with coefficients belonging to a set ''S''.
Quite often, S=\mathbb Q, and one then talks about "function algebraic over \mathbb Q", and
the evaluation at a given rational value of such an algebraic function gives an algebraic number.
A function which is not algebraic is called a transcendental function, as it is for example the case of \exp(x), \tan(x), \ln(x), \Gamma(x). A composition of transcendental functions can give an algebraic function: f(x)=\cos (\arcsin(x)) = \sqrt.
As an equation of degree ''n'' has ''n'' roots, a polynomial equation does not implicitly define a single function, but ''n''
functions, sometimes also called branches. Consider for example the equation of the unit circle:
y^2+x^2=1.\,
This determines ''y'', except only up to an overall sign; accordingly, it has two branches:
y=\pm \sqrt.\,
An algebraic function in ''m'' variables is similarly defined as a function ''y'' which solves a polynomial equation in ''m'' + 1 variables:
:p(y,x_1,x_2,\dots,x_m)=0.\,
It is normally assumed that ''p'' should be an irreducible polynomial. The existence of an algebraic function is then guaranteed by the implicit function theorem.
Formally, an algebraic function in ''m'' variables over the field ''K'' is an element of the algebraic closure of the field of rational functions ''K''(''x''1,...,''x''''m'').
== Algebraic functions in one variable ==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「algebraic function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.